Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Brain Sci ; 12(9)2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2043581

ABSTRACT

A comparative single-evaluation cross-sectional study was performed to evaluate cognitive damage in post-COVID-19 patients. The psychophysics tests of Two-Alternative Forced Choice (2AFC) and Simple Reaction Time (SRT), under a designed virtual environment, were used to evaluate the cognitive processes of decision-making, visual attention, and information processing speed. The population under study consisted of 147 individuals, 38 controls, and 109 post-COVID patients. During the 2AFC test, an Emotiv EPOC+® headset was used to obtain EEG signals to evaluate their Focus, Interest, and Engagement metrics. Results indicate that compared to healthy patients or recovered patients from mild-moderate COVID-19 infection, patients who recovered from a severe-critical COVID infection showed a poor performance in different cognitive tests: decision-making tasks required higher visual sensitivity (p = 0.002), Focus (p = 0.01) and information processing speed (p < 0.001). These results signal that the damage caused by the coronavirus on the central nervous and visual systems significantly reduces the cognitive processes capabilities, resulting in a prevalent deficit of 42.42% in information processing speed for mild-moderate cases, 46.15% for decision-making based on visual sensitivity, and 62.16% in information processing speed for severe-critical cases. A psychological follow-up for patients recovering from COVID-19 is recommended based on our findings.

2.
Sensors (Basel) ; 22(6)2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1742615

ABSTRACT

The interruption of rehabilitation activities caused by the COVID-19 lockdown has significant health negative consequences for the population with physical disabilities. Thus, measuring the range of motion (ROM) using remotely taken photographs, which are then sent to specialists for formal assessment, has been recommended. Currently, low-cost Kinect motion capture sensors with a natural user interface are the most feasible implementations for upper limb motion analysis. An active range of motion (AROM) measuring system based on a Kinect v2 sensor for upper limb motion analysis using Fugl-Meyer Assessment (FMA) scoring is described in this paper. Two test groups of children, each having eighteen participants, were analyzed in the experimental stage, where upper limbs' AROM and motor performance were assessed using FMA. Participants in the control group (mean age of 7.83 ± 2.54 years) had no cognitive impairment or upper limb musculoskeletal problems. The study test group comprised children aged 8.28 ± 2.32 years with spastic hemiparesis. A total of 30 samples of elbow flexion and 30 samples of shoulder abduction of both limbs for each participant were analyzed using the Kinect v2 sensor at 30 Hz. In both upper limbs, no significant differences (p < 0.05) in the measured angles and FMA assessments were observed between those obtained using the described Kinect v2-based system and those obtained directly using a universal goniometer. The measurement error achieved by the proposed system was less than ±1° compared to the specialist's measurements. According to the obtained results, the developed measuring system is a good alternative and an effective tool for FMA assessment of AROM and motor performance of upper limbs, while avoiding direct contact in both healthy children and children with spastic hemiparesis.


Subject(s)
COVID-19 , COVID-19/diagnosis , Child , Child, Preschool , Communicable Disease Control , Hemiplegia , Humans , Range of Motion, Articular , Upper Extremity
SELECTION OF CITATIONS
SEARCH DETAIL